Roll No.:....

C028612(028)

B. Tech. (Sixth Semester) Examination, April-May 2022

(AICTE Branch) Scheme

ANTENNA & WAVE PROPAGATION

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: Attempt all questions. Part (a) of each question is compulsory. Attempt any two parts from (b), (c) and (d). Part (a) is of 4 marks and part (b), (c) and (d) each are of 8 marks.

Unit-I

 (a) Define dominant mode in a waveguide. Write TE dominant modes in a parallel plane, rectangular and circular waveguides.

- (c) A hollow rectangular waveguide with dimensions 6 cm \times 4 cm operates at 3 GHz. Find λ_c , λ_g , β_z and η for the TE_{10} mode.
- (d) Write the advantages of circular waveguide over rectangular wave guide. An air filled circular waveguide is to be operated at a frequency of 6 GHz and is to have dimensions such athat $f_c=0.8$ f for TE_{11} mode. Determine diameter of the wave guide and guide wavelength.

Unit-Ⅱ

- 2. (a) Write different modes of wave propagation and the frequency range in which they are suitable.
 - (b) Define radio horizon and calculate its value.

 Transmitting antenna is placed at a height of 166 meters. If the signal is to be received at a distance

of 66 km, what should be the height of the receiving antenna?

(c) Prove that the R.I. of layer of the atmosphere is given by:

$$\mu = \sqrt{1 - \frac{81N}{f^2}}$$

- (d) Explain the following in relation to sky wave propagation:
 - (i) Skip distance
 - (ii) Critical frequency
 - (iii) Maximum usable frequency
 - (iv) Virtual height
 - (v) Optimum working frequency

Unit-III

- 3. (a) State Reciprocity theorem.
 - (b) What is a half wave dipole? Assuming a sinusoidal current distribution over the dipole length derive an

expression for the vector potential A at a large distance from the dipole and field values.

- (c) Find out maximum effective aperture of short current element.
- (d) For a given antenna $\phi = \phi_m \sin^2 \theta \sin^3 \phi$ where $0 \le \theta \le \pi$, $0 \le \phi \le \pi$. Find directivity D.

Unit-IV

- 4. (a) State the difference between broadside and end fired array.
 - (b) Derive the array factor of linear array consisting of n-isotropic radiators. Draw the radiation pattern of an array of 8 isotropic elements for broadside case, spacing between elements to be taken $\lambda/2$.
 - (c) Prove that the directivity for an end fire array of two identical isotropic in phase point sources spaced distance d apart is given by:

$$D = 2/[1 + (\sin 2\beta d/2\beta d)]$$

[5]

(d) Design a five element broad-side array which has the optimum pattern for a side lobe level of (-20 dB). The spacing between elements has to be $\lambda/2$.

Unit-V

- (a) What is antenna top loading and turning?
 - (b) Explain loop antenna as a direction finder. How sense of direction is determined in direction finding applications.
 - (c) Derive emf equation of loop antenna.
 - (d) What is Log-Periodic antenna? Mention important characteristics of this antenna.